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Abstract. The symmetric periodic Anderson model is well known to capture the essential physics of Kondo
insulator materials. Within the framework of dynamical mean-field theory, we develop a local moment
approach to its single-particle dynamics in the paramagnetic phase. The approach is intrinsically non-
perturbative, encompasses all energy scales and interaction strengths, and satisfies the low-energy dictates
of Fermi liquid theory. It captures in particular the strong coupling behaviour and exponentially small
quasiparticle scales characteristic of the Kondo lattice regime, as well as simple perturbative behaviour in
weak coupling. Particular emphasis is naturally given to strong coupling dynamics, where the resultant
clean separation of energy scales enables the scaling behaviour of single-particle spectra to be obtained.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.20.Hr Local moment in
compounds and alloys; Kondo effect, valence fluctuations, heavy fermions

1 Introduction

In the field of heavy fermion physics, the periodic
Anderson model (PAM) has long played a key role in un-
derstanding the rich range of behaviour arising in these
lanthanide or actinide based compounds [1,2]. A natu-
ral lattice generalization of the single-impurity Anderson
model [2], each lattice site in the PAM contains a non-
degenerate, correlated f -orbital that hybridises locally to
a non-interacting conduction band. The model is certainly
a simplification of material reality, albeit rather a good
one for Ce-based systems where crystal field splittings re-
duce the multiplicity of the f1-configuration to a Kramers
doublet. Yet its simplicity is nominal: a microscopic un-
derstanding of the PAM is far from complete, and even in
low-temperature Fermi liquid phases many basic issues re-
lating to the formation, nature and description of coherent
quasiparticles remain open.

In recent years, considerable progress in understanding
correlated electron systems has been made within the pow-
erful framework of dynamical mean-field theory (DMFT,
reviewed in [3–6]); which is formally exact in the limit of
infinite spatial dimensions, and provides a tangible local
approximation in finite dimensions without trivialising the
central role of interactions. Within DMFT the dynamics
of the system become essentially local, and all correlated
lattice-fermion models reduce to an effective quantum im-
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purity hybridizing self-consistently with the surrounding
fermionic bath [3–6]. But therein lies an unsurprising dif-
ficulty, for to solve such problems entails the ability to de-
scribe an Anderson impurity model (AIM) with essentially
arbitrary dynamics (ω-dependence) in the hybridization
function ∆eff(ω) that encodes the coupling between the
fiducial impurity and the underlying host/bath. Such a
description should be capable of (i) handling the problem
on all energy scales and (ii) across the full range of (f -
electron) interaction strengths U ; and (iii) at low-energies
must satisfy the dictates of Fermi liquid theory aris-
ing from adiabatic continuity to the non-interacting limit
(assuming such a state arises). As such it must be intrin-
sically non-perturbative in order to capture the exponen-
tially small scales symptomatic of strongly correlated be-
haviour, yet must also recover perturbative, weak coupling
behaviour and the non-interacting limit of the problem.

The theoretical difficulties here are well known to
be considerable, even for a pure AIM and naturally the
more so for self-consistent lattice models; particularly
in the context of dynamical properties such as single-
particle excitation spectra, optical conductivities and as-
sociated transport properties. The PAM itself has of
course been studied extensively within DMFT [3–6]: via
numerical methods such as the numerical renormalization
group (NRG) [7,8], quantum Monte Carlo (QMC) [9–12]
and exact diagonalization (ED) [13]; and theoretical
approaches that include perturbation theory (PT) in
the interaction strength [14,15], iterated perturbation



50 The European Physical Journal B

theory (IPT) [16,17], the lattice non-crossing approxima-
tion (LNCA) [18,19] and the simpler but related aver-
age t-matrix approximation [20], large-N mean-field the-
ory [21,22], and the Gutzwiller approach [23,24]. While
much has been learned from these techniques, most suffer
from well recognised limitations and only the NRG [7,8]
meets the above criteria. For example, finite-size effects
render QMC and ED of limited value, the former being
further confined to modest interaction strengths and fi-
nite temperature (T ). On the theoretical side, perturba-
tive methods are restricted to weak coupling and cannot
recover exponentially small scales; NCA-based approaches
violate Fermi liquid behaviour at low-energies and do not
recover the non-interacting limit; while large-N mean-field
theory, which cannot handle the full range of interaction
strengths, amounts simply to a renormalization of the non-
interacting limit and as such is applicable only on the very
lowest-energy scales.

The above comments underscore the need for the de-
velopment of new, necessarily approximate theories. In
the context of pure quantum impurity models (AIMs) we
have recently initiated one such: the local moment ap-
proach (LMA) [25–33], whose primary focus is dynamics
and transport properties. The LMA satisfies the desider-
ata listed above. It handles all energy scales on an equal
footing, and its intrinsically non-perturbative nature en-
ables it to capture the spin-fluctuation physics character-
istic of the strong coupling Kondo regime, embodied dy-
namically in the exponentially narrow, low-energy Kondo
resonance; yet it also spans the full range of interactions,
reducing asymptotically in weak coupling to straight sec-
ond order PT in U [25,30,31]. Fermi liquid behaviour is
moreover recovered at low energies - where appropriate,
the latter point emphasising that the approach is not con-
fined to the conventional Fermi liquid physics inherent
to the metallic AIM, but can also handle the non-Fermi
liquid behaviour and associated quantum phase transi-
tion arising e.g. in the pseudogap AIM [31–33]. Symmet-
ric [25–29,31–33] and asymmetric [30] AIMs can now be
handled within the LMA, which has also been extended to
incorporate finite-T [29] and the role of an applied mag-
netic field H [27,28]. Results for dynamics arising there-
from have also been shown [26,28–32] to give very good
agreement with NRG calculations; and, for static mag-
netic properties of the metallic AIM, with exact results
provided by the Bethe ansatz [27,28].

In this paper we develop the LMA within DMFT to
encompass the symmetric PAM [7–10,13,14,16,19], well
known to be important in understanding the class of
mainly cubic Kondo insulating materials such as CeNiSn,
SmB6, Ce3Bi4Pt3 and YbB12 (see e.g. [34,35]), whose
low-energy electronic structure is characterised by an
interaction-renormalized hybridization gap. Specifically
we consider here T = 0 single-particle dynamics of
the paramagnetic phase. After the relevant background
(Sect. 2), the LMA for the lattice model is specified
(Sect. 3), centering on the two-self-energy description and
notion of symmetry restoration (Sect. 3.1) that underlie
the approach. That discussion is general, applicable to

an arbitrary diagrammatic approximation for the associ-
ated dynamical self-energies, Σσ(ω); the particular non-
perturbative class of diagrams we implement here in prac-
tice is specified in Section 3.2. Following a brief discussion
highlighting deficiencies of the static mean-field approxi-
mation (Sect. 4), LMA results for single-particle dynam-
ics are given in Section 5. As for the pure AIMs consid-
ered hitherto [25–33], the LMA passes the criteria outlined
above. Our primary emphasis, albeit not exclusive, is nat-
urally on the strong coupling regime of the PAM. Here,
granted the ability to capture exponentially small scales
characteristic of the Kondo lattice, the resultant clean sep-
aration of energy scales enables extraction of the universal
scaling behavior of dynamics in terms of the gap scale it-
self; a successful description of which is in addition a nec-
essary prerequisite for a theory of dynamics and associated
transport properties at finite-T , which will be considered
in a subsequent paper. A brief non-technical summary and
some concluding comments are given in Section 6.

2 Background

The Hamiltonian for the PAM is given in standard nota-
tion by

Ĥ = −t
∑

(i,j),σ

c†iσcjσ +
∑
i,σ

(
εf + U

2 f †
i−σfi−σ

)
f †

iσfiσ

+ V
∑
i,σ

(f †
iσciσ + h.c.) (2.1)

where the first term describes the uncorrelated conduc-
tion (c) band with nearest neighbour hopping tij = t.
The second refers to the f - levels with site energies εf

and on-site repulsion U , while the final term describes
c/f - level hybridization via the local matrix element V .
We focus here on local single-particle dynamics embodied
in Gf

ii;σ(ω) ↔ Gf
ii;σ(t) = −i〈T̂ (fiσ(t)f †

iσ)〉 (and likewise
Gc

ii;σ(ω) for the c-electrons); and hence the local spectra
Dγ

ii;σ(ω) = −π−1sgn(ω)ImGγ
ii;σ(ω) (γ = c or f). The key

feature of DMFT [3–6] is that the (f -electron) self-energy
is site-diagonal, Σf

ij;σ(ω) = δijΣ
f
iσ(ω); and from straight-

forward application of Feenberg’s renormalized perturba-
tion theory [36,37], the Gγ

ii;σ(ω) are given by

Gc
ii;σ(ω) =

[
ω+ − V 2

ω+ − εf − Σf
iσ(ω)

− Siσ(ω)

]−1

(2.2a)

Gf
ii;σ(ω) =

[
ω+ − εf − Σf

iσ(ω) − V 2

ω+ − Siσ(ω)

]−1

(2.2b)

where ω+ = ω + i0+sgn(ω) and Siσ(ω) ≡ Siσ[{Gc
jj;σ}] is

the Feenberg (or ‘medium’) self-energy. Equation (2.2b)
embodies the connection to a self-consistent impurity
model that is inherent to DMFT [3–6], since it may
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be cast in the ‘single-impurity’ form Gf
ii;σ(ω) = [ω+ −

εf − Σf
iσ(ω) − ∆eff(ω)]−1 with an effective hybridization

∆eff(ω) = V 2[ω+−Siσ(ω)]−1 that is to be self-consistently
determined.

In this paper we consider explicitly the symmetric
PAM with εf = −U

2 , for which nf =
∑

σ〈f †
iσfiσ〉 = 1 and

nc =
∑

σ〈c†iσciσ〉 = 1 for all U . In contrast e.g. to the Hub-
bard model, the problem is thus characterized by two inde-
pendent dimensionless parameters: U/t∗ and V/t∗, where
the hopping is scaled as t = t∗/2

√
Zc (with Zc → ∞ the

co-ordination number).
Equations (2.2) are general: independent of lattice type

and whether/not magnetic ordering arises. Here we con-
sider primarily the Bethe lattice (BL) (because its spec-
trum is bounded), for which the Feenberg self-energy

Siσ(ω) =
∑
j �=i

t2ijG
c
jj;σ(ω) . (2.3)

We shall moreover focus on the homogeneous paramag-
netic phase (the antiferromagnetically ordered state is
readily handled but less interesting). In this case equa-
tions (2.2) reduce to

Gc(ω) =
[
ω+ − V 2

ω+ − Σ(ω)
− 1

4
t2∗G

c(ω)
]−1

(2.4a)

Gf (ω) =
[
ω+ − Σ(ω) − V 2

ω+ − 1
4 t2∗Gc(ω)

]−1

(2.4b)

written explicitly for the BL; with the conventional single
self-energy Σ(ω) = εf +Σf(ω) (= ΣR(ω)− i sgn(ω)ΣI(ω))
defined to exclude the trivial Hartree contribution (of
U
2 nf , which precisely cancels the bare εf = −U

2 ). And
the problem is particle-hole symmetric, reflected in

Σ(ω) = −Σ(−ω) Gγ(ω) = −Gγ(−ω) (2.5)

with ω = 0 the Fermi level.
The trivial limits of the model, used below, are two-

fold. First, V = 0 (for any U), where we denote the
c-electron Green function by g0(ω), with spectral den-
sity ρ0(ω): for the BL ρ0(ω) = 2

πt∗
[1 − (ω/t∗)2]

1
2 is

a semi-ellipse of halfwidth t∗ (from Eq. (2.4a)), while
ρ0(ω) = [

√
πt∗]−1exp(−[ω/t∗]2) for the hypercubic lat-

tice (HCL) [3–6]. Second, the non-interacting limit U = 0,
denoting the Green functions by gγ

0 (ω; V 2) with the V -
dependence explicit (g0(ω) ≡ gc

0(ω; V 2 = 0)). The corre-
sponding spectra are related generally (from Eqs. (2.2)) by

df
0 (ω; V 2) =

V 2

ω2
dc
0(ω; V 2) (2.6)

and dc
0(ω; V 2) = ρ0(ω − V 2/ω). The obvious point here

is that for all V �= 0 the system is a hybridization gap
insulator [38]. The gap is soft for the HCL, but hard for
the BL where the (half) band-gap ∆0

g(V 2) is given by

2∆0
g(V

2) =
√

t2∗ + 4V 2 − t∗ (2.7)

with corresponding spectrum

t∗dc
0(ω; V 2) =

2
π

[
1 −

(
V 2

ωt∗
− ω

t∗

)2
] 1

2

(2.8)

for ∆0
g ≤ |ω| ≤ ∆0

g + t∗. Note trivially that the U = 0
spectra cannot be expressed in a one-parameter scaling
form by suitable dimensionless rescaling of ω: no matter
how ω is thus rescaled (e.g. as ω/t∗), the dγ

0 each remain
dependent on the ratio V/t∗ of bare parameters.

On increasing U from zero the system remains insulat-
ing and is perturbatively connected to the non-interacting
limit, being as such a Fermi liquid (which is wholly com-
patible with the insulating nature of the state). The lim-
iting low-ω behaviour of the single-particle Green func-
tions amounts to a renormalization of the non-interacting
limit, which is the origin of the renormalized band pic-
ture [2,5,39]. This follows simply by employing the leading
low-ω expansion of the self-energy Σ(ω) [2,5], viz.

Σ(ω) ∼ −
[

1
Z

− 1
]

ω (2.9)

from equation (2.5), with Z = [1 − (∂ΣR(ω)/∂ω)ω=0]−1

the quasiparticle weight (and with ΣI(ω) neglected on the
grounds that it vanishes in the gap). The leading low-ω
behaviour of the Gγ(ω) then follows (from Eqs. (2.2)) as:

Gc(ω) ∼ gc
0(ω; ZV 2) (2.10a)

Gf (ω) ∼ Zgf
0 (ω; ZV 2). (2.10b)

Equations (2.10) embody the quasiparticle behaviour
of the PAM, akin to the local Fermi liquid quasiparticle
form for the impurity Green function of the Anderson im-
purity model (AIM) [2]. While well known per se [2], they
have an important implication for the scaling behaviour
of the single-particle spectra Dγ(ω) in the strong cou-
pling/Kondo lattice regime of large-U , where the quasi-
particle weight Z becomes exponentially small [8] (as
considered in Sect. 5). The renormalized indirect band-gap
∆g = ∆0

g(ZV 2) is given from equation (2.7) as Z → 0 by
∆g = ZV 2/t∗, and the spectra Dγ(ω) follow from equa-
tions (2.10, 2.8, 2.6). Their scaling behaviour in strong
coupling follows by considering finite ω′ = ω/∆g in the
formal limit ∆g ∝ Z → 0; and the resultant asymptotic
behaviour of the Dγ(ω) is given by

t∗Dc(ω) ∼ 2
π

[
1 − 1

ω′2

] 1
2

(2.11a)

2π
V 2

t∗
Df (ω) ∼ 4

ω′2

[
1 − 1

ω′2

] 1
2

· (2.11b)

Equations (2.11) show that both t∗Dc(ω) and
V 2

t∗
Df (ω) (and not therefore t∗Df (ω)) exhibit one-

parameter universal scaling in terms of ω′ = ω/∆g, with
no explicit dependence on the bare material parameters
U/t∗ and V/t∗ (which behaviour is naturally not specific
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to the BL). This simple argument does not of course de-
termine either the dependence of ∆g on the bare param-
eters, or more importantly the ω′- range in which equa-
tions (2.10, 2.11) hold: for these a ‘real’ theory is required.
But the observation is important in that it suggests the
Dγ(ω) in strong coupling should more generally exhibit
such scaling, and provides explicitly the limiting behaviour
that, as |ω′| = |ω|/∆g → 0, must of necessity be recov-
ered by any microscopic theory; which touchstone will be
compared to the LMA results in Section 5.2.

3 Local moment approach (LMA)

The usual route to single-particle dynamics is via the con-
ventional single self-energy Σ(ω). But a determination of
G(ω) in this way is neither mandatory nor a priori de-
sirable: in practice, theoretical approaches of this ilk are
liable to suffer from being essentially perturbative in the
interaction U (even if self-consistent), thus preventing ac-
cess to the strongly correlated regime of primary interest.
The LMA thus avoids such an approach completely and, as
for the pure impurity models considered hitherto [25–33],
has three essential elements. (i) Local moments (‘µ’), re-
garded as the first effect of interactions, are introduced
explicitly and self-consistently from the outset: the start-
ing point is thus static mean-field (MF, i.e. unrestricted
Hartree-Fock). This contains two degenerate, local symme-
try broken MF states, denoted by α = A or B and corre-
sponding respectively to local moments µ = +|µ| or −|µ|.
Severely limited by itself, simple MF nonetheless provides
a starting point for a non-perturbative many-body ap-
proach. (ii) The LMA achieves this by employing a two-
self-energy description that follows naturally from the un-
derlying two local saddle points; introducing non-trivial
dynamics into the two self-energies via their functional
dependence on the broken symmetry MF propagators.
(iii) The final, key idea behind the LMA is that of sym-
metry restoration: self-consistent restoration of the bro-
ken symmetry inherent at pure MF level, and recovery of
Fermi liquid/quasiparticle behaviour, as discussed below.

As for the paramagnetic phase of the Hubbard model
in infinite-d [40], the essence of the approach to the PAM,
whether at MF level or beyond, is statistical: any given
site is with equal probability of α =A (µ = |µ|) or B
(µ = −|µ|) type. First consider briefly pure MF, where
the interaction self-energies are purely static Fock (‘bub-
ble diagram’) contributions; given explicitly by Σ̃0

Aσ =
−σ

2 U |µ| = Σ̃0
B−σ for α = A or B sites. The corresponding

MF propagators are denoted by gγ
ασ(ω) (γ = c or f), and

the total Green functions by

gγ(ω) =
1
2

∑
α

gγ
ασ(ω). (3.1)

The gγ
ασ(ω) are given for the BL by (see Eqs. (2.2))

gc
Aσ(ω) =

[
ω+ − V 2

ω+ + σx
− 1

4
t2∗g

c(ω)
]−1

(3.2a)

gf
Aσ(ω) =

[
ω+ + σx − V 2

ω+ − 1
4 t2∗gc(ω)

]−1

(3.2b)

where x = 1
2U |µ|; and where (see Eq. (2.3)) the Feen-

berg self-energy Siσ(ω) = 1
4 t2∗g

c(ω) since precisely half the
(Zc → ∞) nearest neighbours to any given site are of α =
A (or B) type. The gγ

Bσ(ω) follow analogously and satisfy
gγ
Aσ(ω) = gγ

B−σ(ω) (‘↑/↓-spin symmetry’); while particle-
hole symmetry is reflected in gγ

ασ(ω) = −gγ
α−σ(−ω) and

hence (via Eq. (3.1)) gγ(ω) = −gγ(−ω). And at pure MF
level the local moment |µ| is determined self-consistently
from the usual MF condition |µ| = |µ̄(x)|, with |µ̄|
given by

|µ̄| =
∫ 0

−∞
dω [df

A↑(ω) − df
A↓(ω)] (3.3)

(and dγ
ασ(ω) = −π−1sgn(ω)Imgγ

ασ(ω)).
MF results will be discussed in Section 4, and their se-

rious deficiencies highlighted. We consider now the general
case, the algebraic structure of which is formally equiva-
lent to that at MF level. The full Gγ(ω) are expressed as

Gγ(ω) =
1
2

∑
α

Gγ
ασ(ω) (3.4)

where (see Eqs. (2.2, 2.3))

Gc
ασ(ω) =

[
ω+ − V 2

ω+ − Σ̃ασ(ω)
− 1

4
t2∗G

c(ω)
]−1

(3.5a)

Gf
ασ(ω) =

[
ω+ − Σ̃ασ(ω) − V 2

ω+ − 1
4 t2∗Gc(ω)

]−1

(3.5b)

and the Feenberg self-energy Siσ(ω) = 1
4 t2∗Gc(ω) for the

same reason given above. In contrast to static MF level
however, the self-energies

Σ̃Aσ(ω) = Σ̃B−σ(ω) (3.6)

are now dynamical. They may be separated conveniently
as Σ̃Aσ(ω) = −σ

2 U |µ̄|+ ΣAσ(ω) into (a) the purely static
Fock contribution −σ

2 U |µ̄| (that alone is retained at pure
MF level); together with (b) the dynamical contribution
ΣAσ(ω) ≡ ΣAσ[{gf

Aσ}] that is a functional of the MF prop-
agators, and a suitable, naturally approximate choice for
which (Sect. 3.2) determines the extent to which the key
physics of the problem is captured in practice. The full
Gγ

ασ(ω) likewise satisfy ↑/↓-spin symmetry

Gγ
Aσ(ω) = Gγ

B−σ(ω) (3.7a)

(from Eqs. (3.4, 3.6)); as well as particle-hole symmetry

Gγ
ασ(ω) = −Gγ

α−σ(−ω) (3.7b)

(reflecting Σ̃ασ(ω) = −Σ̃α−σ(−ω) for the symmetric
PAM considered). As for the AIMs considered previ-
ously [25–33], the two-self-energy description inherent to
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the LMA is explicit in equations (3.4, 3.5). The resul-
tant c- and f -electron Green functions are, as they must
be in the absence of an applied magnetic field, rotation-
ally invariant: equation (3.4) is correctly σ-independent,
as follows from equation (3.7a). The requisite particle-hole
symmetry Gγ(ω) = −Gγ(−ω) is likewise satisfied, using
equations (3.4, 3.7b).

Before proceeding note that, using equation (3.7a),
equation (3.4) for the Gγ(ω) may be written as Gγ(ω) =
1
2

∑
σ Gγ

ασ(ω), involving now a spin sum that (from
Eq. (3.7a)) is independent of α = A or B (which obviously
holds also for the MF Eq. (3.1)). This is entirely equiva-
lent to equation (3.4). We choose to work with this form
and, since the α-label is redundant, drop it from now on
(using α = A implicitly). The basic underlying equations
on which we subsequently focus are thus

Gγ(ω) =
1
2

∑
σ

Gγ
σ(ω) (3.8a)

with

Gc
σ(ω) =

[
ω+ − V 2

ω+ − Σ̃σ(ω)
− 1

4
t2∗G

c(ω)
]−1

(3.8b)

Gf
σ(ω) =

[
ω+ − Σ̃σ(ω) − V 2

ω+ − 1
4 t2∗Gc(ω)

]−1

(3.8c)

and the f -electron self-energies separated as

Σ̃σ(ω) = −σ

2
U |µ̄| + Σσ(ω) (3.9)

with |µ̄| ≡ |µ̄(x)| given by equation (3.3).

3.1 Σ(ω) and symmetry restoration

The conventional single self-energy Σ(ω) may if desired be
obtained as a direct byproduct of the two-self-energy de-
scription inherent to the LMA (although the converse does
not of course hold). Σ(ω) is defined by equation (2.4b) for
Gf (ω), direct comparison of which to its two-self-energy
counterpart equations (3.8a, 3.8c) yields

Σ(ω) = 1
2 (Σ̃↑(ω) + Σ̃↓(ω))

+
[ 12 (Σ̃↑(ω) − Σ̃↓(ω))]2

G−1(ω) − 1
2 (Σ̃↑(ω) + Σ̃↓(ω))

(3.10)

where G(ω) = [(Gf (ω))−1 +Σ(ω)]−1 is the so-called host/
medium f -electron propagator [41]. This relation is gen-
eral (i.e. not specific to the BL), but for the particular
case of the BL G(ω) is given explicitly by

G−1(ω) = ω+ − V 2

ω+ − 1
4 t2∗Gc(ω)

(3.11)

(using Eq. (2.4b)). Notice also that Σ(ω) can equiva-
lently be defined by Equation (2.4a) for Gc(ω): direct com-
parison of which to its two-self-energy counterpart equa-
tions (3.8a, 3.8b) again yields equation (3.10), as it must.
Given the {Σ̃σ(ω)} and hence (from Eqs. (3.8a, 3.8b))
Gc(ω), Eq. (3.10) enables Σ(ω) to be determined.

The final, important notion underlying the LMA is
symmetry restoration (SR) [25–33]: self-consistent restora-
tion of the broken symmetry endemic at pure MF level,
and correct recovery of the low-ω quasiparticle behaviour
equations (2.10) that reflects adiabatic continuity to the
non-interacting limit. As for the AIMs considered hith-
erto [25–33], whether symmetric or asymmetric, this is
embodied in the SR condition Σ̃↑(ω = 0) = Σ̃↓(ω = 0)
at the Fermi level; and hence Σ̃σ(ω = 0) = 0 (for ei-
ther σ) for the present particle-hole symmetric problem
(Σ̃σ(ω) = −Σ̃−σ(−ω)), i.e.

Σ̃↑(ω = 0) = Σ↑(ω = 0) − 1
2
U |µ̄| = 0. (3.12)

If SR equation (3.12) is satisfied, then the leading ω → 0
behaviour of the Σ̃σ(ω) follows from particle-hole sym-
metry as (ReΣ̃σ(ω) ≡)Σ̃R

σ (ω) = −(Z−1
σ − 1)ω, where

Zσ = [1 − (∂Σ̃R
σ (ω)/∂ω)ω=0]−1 is thus defined and is in-

dependent of σ. (The Σ̃I
σ(ω) ≡ ΣI

σ(ω) may be neglected
inside a hard gap or, if the gap is soft, because they
vanish sufficiently rapidly as ω → 0; which behaviour is
guaranteed from the diagrams for Σσ(ω), Sect. 3.2ff.) Us-
ing this asymptotic behaviour in the basic two-self-energy
equation (3.8) for the Gγ(ω) shows that the quasiparticle
form equation (2.10) is correctly recovered, with quasi-
particle weight Z = [1 − (∂ΣR(ω)/∂ω)ω=0]−1 ≡ Zσ; i.e.
the leading low-ω behaviour of Σ̃R

σ (ω) and ΣR(ω) coin-
cide, Σ̃R

σ (ω) = ΣR(ω) = −(Z−1 − 1)ω (as may also be
verified directly from Eq. (3.10)). And we add that the
persistence of the insulating gap with increasing interac-
tion U , implied by the quasiparticle form equations (2.10)
with Z > 0, is readily shown to be guaranteed only if SR
equation (3.12) is satisfied. Finally, we note that the SR
condition Σ̃↑(ω = 0) = Σ̃↓(ω = 0) can be shown to apply
generically to the paramagnetic phase of the asymmetric
PAM, which is in general metallic. In this case, as for the
asymmetric AIM discussed in [30], satisfaction of SR en-
sures that ΣI(ω) ∝ ω2 as ω → 0 and hence the recovery
of metallic Fermi liquid behaviour as required by continu-
ity to the non-interacting limit. Equation (3.12) is thus a
particular case of the general SR condition, applicable to
the particle-hole symmetric PAM where the ground state
is insulating. As for the AIM its imposition – as a single
condition at the Fermi level ω = 0 – underlies the LMA,
amounting in practice to a self-consistent determination
of the local moment |µ| (that supplants the pure MF con-
dition |µ| = |µ̄(x)|, see Eq. (3.3)); and, most importantly,
generating the low-energy spin-flip/Kondo scale that is
symptomatic of the Kondo insulators and detailed in
Section 5.
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Fig. 1. (a) Class of diagrams for the f -electron self-energies
Σσ(ω) here retained in practice. The interaction U is denoted
by a wavy line, MF propagators by a single line, and the
renormalized host/medium propagator (see text) by a dou-
ble line. (b) Equivalent recasting (including incoming/outgoing
propagators) to illustrate the spin-flip scattering involved.
(c) Particle-hole ladder sum in the transverse spin channel;
for Π−+(ω), spins are reversed.

3.2 Self-energies

The above discussion is general, and to proceed in
practice requires specification of the dynamical Σσ(ω)’s
(Eq. (3.9)). The specific class of diagrams retained here
is naturally motivated on physical grounds. They embody
self-consistent, dynamical coupling of single-particle exci-
tations to low-energy transverse spin fluctuations on all
sites, that is essential in particular to capture the strong
coupling Kondo lattice regime. The diagrams are shown
in Figure 1, single lines denoting the MF f -electron prop-
agators for site i, and wavy lines the local interaction U ;
the double line propagator denotes the broken symmetry
host/medium f -electron propagator G̃σ(ω) specified below
(see also [40]). The diagrams may be regrouped as shown
in Figure 1, which translates to:

Σσ(ω) = U2

∫ ∞

−∞

dω1

2πi
G̃−σ(ω − ω1)Π−σσ(ω1). (3.13)

In physical terms these diagrams describe dynamical,
correlated spin-flip scattering processes: in which having,
say, added a σ-spin electron to a −σ-spin occupied f -level
on site i, the −σ-spin hops off the f -level and thus gen-
erates an on-site spin-flip (reflected in the transverse spin
polarization propagator Π−σσ(ω)); the −σ-spin electron
then propagates through the lattice/host in a correlated
fashion, interacting fully with f -electrons on sites j �= i
(reflected in the host/medium G̃−σ(ω)); before returning

to site i at a later time whereupon the originally added σ-
spin is removed (which process simultaneously restores the
spin-flip on site i). The renormalized f -electron medium
propagator G̃−σ, which embodies correlated propagation
of the −σ-spin electron through the lattice, is given ex-
plicitly for the BL by (cf. Eq. (3.11))

G̃−σ(ω) =
[
ω+ − σ

2
U |µ| − V 2

ω+ − 1
4 t2∗Gc(ω)

]−1

· (3.14)

Its diagrammatic expansion in terms of MF propagators
and dynamical self-energy insertions Σ−σ(ω), and hence
the infinite set of diagrams implicitly summed in equa-
tion (3.13) for Σσ(ω), is readily shown to have precisely
the same topology as its counterpart for the Hubbard
model employed previously in [40]. We thus refer the
reader to [40] (Sect. 3.1 therein) for detailed discussion
of the diagrammatics, here emphasizing just two points.
(i) Renormalization of Σσ(ω) in terms of the medium
propagator G̃−σ(ω), rather than Gf

−σ itself, is embodied
in the fact [40] that G̃−σ, contains dynamic self-energy in-
sertions on any site j excluding the original site i (as im-
plicit in the static MF interaction on site i appearing in
Eq. (3.14)). This accounts in effect for the hard core boson
nature of the on-site spin-flip, which would be violated if
renormalization in terms of Gf

−σ was employed (itself ne-
cessitating inclusion of additional classes of cancelling di-
agrams). (ii) Most importantly we emphasize the strongly
renormalized, and hence self-consistent, nature of the di-
agrams retained in Σσ(ω). This is reflected directly in the
fact that G̃−σ(ω) (Eq. (3.14)) depends upon Gc(ω) (via the
‘effective hybridization’ ∆eff(ω) = V 2[ω+ − 1

4 t2∗Gc(ω)]−1),
which is to be self-consistently determined via solution of
equations (3.8).

The transverse spin polarization propagator entering
equation (3.13) for Σσ(ω) is given at the simplest level,
shown explicitly in Figure 1, by an RPA-like particle-hole
ladder sum in the transverse spin channel; viz.

Πσ−σ(ω) = 0Πσ−σ(ω)
[
1 − U 0Πσ−σ(ω)

]−1
(3.15)

where the bare particle-hole bubble is itself expressed in
terms of the broken symmetry MF f -electron propaga-
tors {gf

σ}. Our subsequent discussion refers explicitly to
Πσ−σ(ω) described at this level; in Section 5 a further
renormalization is also considered, wherein 0Πσ−σ(ω) and
hence Πσ−σ(ω) are expressed in terms of the fully self-
consistent host/medium propagators {G̃σ} (i.e. with all
propagators in Figure 1 renormalized in terms of the dou-
ble line G̃σ ’s). Whichever level is employed, the 0Πσ−σ and
hence Πσ−σ are readily shown to be related by Π−σσ(ω) =
Πσ−σ(−ω); whence only one such, say Π+−(ω), need be
considered explicitly. Using this, and the Hilbert trans-
form for Π+−(ω), equation (3.13) reduces to the following
form convenient for later analysis (Sect. 5.1)

Σ↑(ω) = U2

∫ ∞

−∞

dω1

π
Im Π+−(ω1)[θ(ω1)G̃−

↓ (ω1 + ω)

+ θ(−ω1)G̃+
↓ (ω1 + ω)] (3.16)
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(with Σ↓(ω) = −Σ↑(−ω)); where θ(x) is the unit step
function and G̃σ = G̃+

σ + G̃−
σ is separated into the one-

sided Hilbert transforms

G̃±
σ (ω) =

∫ ∞

−∞
dω1

D̃σ(ω1)θ(±ω1)
ω − ω1 ± i0+

(3.17)

with D̃σ(ω) = −π−1sgn(ω)ImG̃σ(ω) the corresponding
spectral density. Note also that Σσ(ω) depends explic-
itly on U (via the interaction vertices), as well as im-
plicitly on x = 1

2U |µ| via the dependence of the MF
propagators thereon (Eqs. (3.1, 3.2)). In particular, the
symmetry restoration condition equation (3.12) has the
functional form

ΣR
↑ (ω = 0; U, x) =

1
2
U |µ̄(x)| (3.18)

exploited below.

3.3 Practice

We now draw together the preceding discussion and spec-
ify what we find to be an efficient practical algorithm to
solve the LMA-DMFT equations. This consists of the fol-
lowing basic steps:
(i) ‘Startup’. For any given x = 1

2U |µ|, equations (3.1,
3.2) are first solved to give the MF propagators gγ(ω)
(≡ 1

2

∑
σ gγ

σ(ω) with gγ
σ(ω) ≡ gγ

Aσ(ω) and γ =c or f).
From this the polarization propagators Πσ−σ(ω) follow
(Eq. (3.15)); and with Gc(ω) � gc(ω), the initial f -
electron medium propagator G̃−σ(ω) follows on comparing
equations (3.14, 3.2b) as G̃−σ(ω) � gf

−σ(ω). The startup
Σσ(ω) = Σσ(ω; U, x) follows directly from equation (3.13).
(ii) The symmetry restoration condition ΣR

↑ (ω =
0; U, x) = 1

2U |µ̄(x)|, is then solved for U given x = 1
2U |µ|

(or vice versa which, while entirely equivalent, is less ef-
ficient in practice); the local moment |µ| follows immedi-
ately.
(iii) With the resultant Σ̃σ(ω) = −σ

2 U |µ̄| + Σσ(ω)
(Eq. (3.9)), equations (3.8a, 3.8b) are then solved di-
rectly for Gc(ω) (with Gf (ω) following in consequence
from Eqs. (3.8a, 3.8c)).
(iv) The resultant Gc(ω) is then used in equation (3.14)
to obtain a new G̃−σ(ω); and hence via equation (3.13)
a new Σσ(ω). Now return to step (ii) and iterate to self-
consistency.

We find the above algorithm to be efficient, typically
converging after 4-5 iterations and computationally fast on
a PC. It is easily generalized to the case (Sect. 5) where
the Π+−’s are renormalized in terms of the {G̃σ}; as well
as to encompass the hypercubic lattice, Section 5.2 (or
indeed an arbitrary lattice DOS ρ0(ω) (see Sect. 2) that
may be employed in materials modelling applications of
DMFT).

Results from pure MF (step(i) alone, with |µ| deter-
mined from |µ| = |µ̄(x)|) will be discussed in Section 4.
We shall also discuss separately (Sect. 5.1) ‘1-loop’ results
obtained from a single iterative loop of the above scheme

(steps (i)–(iii)): this has the advantage of being analyti-
cally tractable, and contains much of the key behaviour
found in the full iterative solution (Sect. 5.2).

Before proceeding we mention the issue of stability
that is important for the PAM, as for the AIMs [25–33]
within the LMA: the fact that ReΠ+−(ω = 0) > 0 of
necessity (as follows directly from its Hilbert transform).
For this to be satisfied, using equation (3.15) (and that
Im 0Π+−(ω = 0) = 0), 0 < URe 0Π+−(ω = 0) ≤ 1 is re-
quired. An explicit expression for Re 0Π+−(0) is however
readily obtained (see e.g. [25,30]), viz.

URe 0Π+−(ω = 0) =
|µ̄(x)|
|µ| (3.19)

with |µ̄(x)| given by equation (3.3) (and x = 1
2U |µ|). For

stability, |µ| ≥ |µ̄(x)| is thus required. The broken symme-
try pure MF solutions, for which |µ| = |µ̄(x)| determines
the local moment, are thus properly stable (always, which
we note would not be the case if restricted Hartree-Fock,
with |µ| = 0 enforced a priori, was employed). But they lie
on the ‘stability border’, with URe 0Π+−(ω = 0) = 1. The
latter in turn implies, from equation (3.15), that the trans-
verse spin propagator Π+−(ω) contains a pole at ω = 0;
reflecting physically the fact that the pure MF state is,
locally, a degenerate doublet. The latter behaviour is cor-
rect for a local moment phase, which for the PAM means
the zero-hybridization limit where the f -electrons decou-
ple from the conduction band (which limit we add the
LMA recovers exactly). It is not however correct for the
Kondo insulating state that is adiabatically connected to
the non-interacting (singlet) limit: here by contrast the
characteristic energy scale for the local spin-flips is non-
zero, and on the order of the Kondo scale that typifies the
Kondo insulators.

The above behaviour is however entirely specific to
the pure MF level of self-consistency, i.e. arises only if
|µ| is determined by |µ| = |µ̄(x)|. And the central point
is that within the LMA the local moment is determined
from the symmetry restoration condition equation (3.18)
(step (ii) above in which |µ| > |µ̄(x)| is always found). In
consequence ImΠ+−(ω) contains not an ω = 0 spin-flip
pole, but rather a resonance centred on a non-zero fre-
quency ωm. This is the low-energy scale characteristic of
the Kondo lattice, its origin within the LMA thus stem-
ming from self-consistent imposition of symmetry restora-
tion; and its physical significance being that it sets the
timescale τ ∼ h/ωm for restoration of the locally broken
symmetry/degeneracy inherent at pure MF level. We add
moreover that for V �= 0 symmetry restoration is found to
be satisfied for all U ≥ 0. Its breakdown at finite U would
signal an underlying quantum phase transition (such as
arises in the pseudogap impurity model, see e.g. [31–33]);
which, in concurrence with general belief, does not there-
fore arise for the paramagnetic phase of the PAM within
DMFT.
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Fig. 2. Illustrative mean-field results for V 2/t2∗ = 0.2. (a) MF local moment |µ0| vs. U/t∗. MF f -electron spectra, t∗df (ω) vs.
ω/t∗ for (b) x = 1

2
U |µ0| = 0; (c) x = 0.9 (U/t∗ � 2.1); (d) x = 2 (U/t∗ � 4.2).

4 Mean-field

Our discussion of pure MF is brief: it is fundamentally
flawed, lacking even an insulating gap beyond small inter-
action strengths, as illustrated below. Understanding its
deficiencies is however important, for it ultimately under-
pins a successful description of the Kondo insulating state.
Moreover as demonstrated in Section 5, the primary de-
ficiencies of pure MF arise on energy scales on the order
of the insulating gap or multiples thereof. Such scales are
naturally of paramount importance, but are nonetheless
small – exponentially so in the strong coupling Kondo lat-
tice regime – compared to bare (‘non-universal’) scales on
the order of U , t∗ or V . This suggests that MF might
provide an essentially sound description of dynamics on
non-universal energy scales; an issue considered in Sec-
tion 5.

Figure 2 shows the U/t∗ dependence of the MF mo-
ment for V 2/t2∗ = 0.2, determined as in Section 3 from
|µ| = |µ̄(x)| (x = 1

2U |µ|) and denoted by |µ0|. The local
moment first becomes non-zero for U/t∗ � 1.41, increas-
ing rapidly thereafter with U/t∗ such that for U/t∗ � 2
or so the moment is well formed and close to saturation.
Such behaviour sets in at even lower U/t∗ with decreasing
hybridization V 2/t2∗, reflecting the atomic limit incipient
as V → 0 where the f -levels decouple from the band.

Illustrative spectral evolution with U is given in Fig-
ures 2b–d, where the f -level spectrum t∗df (ω) vs. ω/t∗
is shown for x = 1

2U |µ0| = 0, 0.9 (U/t∗ � 2.1) and
2 (U/t∗ � 4.2). The characteristics of the non-interacting
hybridization gap insulator (Fig. 2b) are rapidly lost with
increasing U : MF produces an insulator-metal transition
occurring at U/t∗ � 1.48 just after local moments form
(and arising generally at x = 2V 2/t∗ as follows from

Eqs. (3.1, 3.2a) at the Fermi level ω = 0). With increasing
U/t∗, Figure 2c, d, Hubbard satellites at |ω| � U

2 form in
the f -electron spectra, rapidly acquiring dominant spec-
tral weight at the expense of intensity on the ‘band’ scales
|ω| � t∗; the converse occurring for the MF c-electron
spectrum dc(ω) (not shown) where spectral intensity on
the band scales increases with U/t∗.

The simple nature of the MF spectra in strong cou-
pling (U � 2V 2/t∗) is in fact seen directly from equa-
tions (3.1, 3.2). For x = 1

2U |µ0| ∼ U
2 � V 2/t∗, and for

|ω| � U
2 , equations (3.1, 3.2a) yield

gc(ω) �
[
ω+ − 1

4
t2∗g

c(ω)
]−1

≡ g0(ω) (4.1)

(with g0(ω) the V = 0 conduction band Green function,
Section 2); i.e. V and U drop out, producing a conduction
band dc(ω) � ρ0(ω) characteristic of the decoupled V =
0 limit (a semi-ellipse for the BL considered explicitly).
In practice this behaviour is well attained for x � 2 or
so, and in consequence the f -electron gf

σ(ω) follows from
equation (3.2b) as gf

σ(ω) � [
ω+ + σ U

2 − V 2g0(ω)
]−1

. The
resultant df

σ(ω), while dominated by the satellites at |ω| �
U
2 , nonetheless contains a low-intensity continuum on the
band scales |ω| < t∗, given explicitly by:

df
σ(ω) ∼ 4

V 2

U2
ρ0(ω). (4.2)

This is evident in Figure 2; it will also prove important in
determining (Sect. 5.1) the V -dependence of the Kondo
scale within the LMA.

The ‘insulator-metal transition’ is of course entirely
an artifact of MF, and the resultant ‘metal’ not a Fermi
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Fig. 3. LMA spectra, all-scales overview. Top panels: conduction electron spectra; bottom panels: f -electron spectra. (a) For
x = 1

2
U |µ| = 1 (U = 2.2), (b) For x = 3 (U = 6.1); with V 2 = 0.2 in either case. Corresponding results at pure MF level are

shown for comparison (dashed lines).

liquid: the pure MF single self-energy ΣMF(ω) =
ΣR

MF(ω) − isgn(ω)ΣI
MF(ω) is obtained from the general

result equation (3.10) using Σ̃σ ≡ −σx; is given by

ΣMF(ω) =
x2

ω+ − V 2

ω+− 1
4 t2∗gc(ω)

(4.3)

(which we note is not purely static), and is such that
ΣI

MF(ω = 0) �= 0 at the Fermi level if dc(ω = 0) ∝
Imgc(ω = 0) is non-zero – thus violating Fermi liquid be-
haviour. But the perversity of MF in predicting a metallic
state for the symmetric PAM which describes the Kondo
insulator, does not survive the inclusion of correlated elec-
tron dynamics in the self-energies Σ̃σ(ω). To which we now
turn.

5 Results

We begin with a brief overview of spectral evolution on all
energy scales, and from weak to strong coupling interac-
tion strengths, before turning (Sect. 5.1ff) to the central
behaviour at low-energies, and in the strongly correlated
regime.

With t∗ = 1 as the unit of energy, and V 2 = 0.2,
Figure 3 shows representative c- and f -electron spectra
obtained from the LMA: for x = 1

2U |µ| = 1 and 3 (corre-
sponding respectively to U = 2.2 and 6.1). Corresponding
results at pure MF level are shown for comparison. The
x = 1 example is transitional between weak and strong
coupling behaviour. Here the Kondo insulating gap, which
the LMA preserves correctly for all U , is discernible (just)

on the scales shown; and Hubbard satellites, apparent in
both Df (ω) and Dc(ω), are just ‘breaking away’ from the
main band. The x = 3 example by contrast is typical of
strong coupling behaviour (which in practice is reached
by x � 2): the gap is exponentially small (Sect. 5.1, 5.2)
and as such not resolved on the scales shown; and the
satellites are well formed, dominating the net spectral in-
tensity in Df (ω) (as is physically obvious) and giving an
ever diminishing contribution to Dc(ω).

Comparison to the MF spectra is revealing, particu-
larly for the strong coupling example x = 3 (Fig. 3b).
The Hubbard satellites are, unsurprisingly, broadened and
shifted slightly from their MF counterparts. However for
the c-electron spectrum it is clear that on the band scales
|ω| < t∗, and excepting the (all important) low-energy
gap region, the LMA and MF spectra are nigh on coinci-
dent; supporting the notion that MF itself provides a rea-
sonable description of the conduction band on bare/non-
universal energy scales. We emphasize that this applies
only to Dc(ω) and not to the f -electron spectra: here, as
seen directly from Figure 3, the MF spectra are deficient
throughout the band, reflecting the dominance of corre-
lated electron dynamics for the f -levels, that are simply
absent in MF.

The LMA results shown in Figure 3 refer to the fully
self-consistent level described in Section 3.3. We add how-
ever that on the full energy regime shown these differ
insignificantly from the LMA results obtained either at
the simpler 1-loop level (Sect. 3.3), or with the transverse
spin polarization propagators Πσ−σ further renormalized
in terms of the host/medium propagators {G̃σ}; as illus-
trated in Figure 4 for x = 3 (U = 6.1). The differences
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Fig. 4. All-scales comparison of LMA spectra at different lev-
els of description, for x = 1

2
U |µ| = 3 (U = 6.1) with V 2 = 0.2.

Top panel, c-electron spectrum; bottom, f -electron spectrum.
Solid line: self-consistent LMA (‘LMA I’, see text, Sect. 5.2).
Dashed line: with further renormalization of Πσ−σ propaga-
tors as described in text (‘LMA II’). Dotted line: 1-loop LMA
results. For the f -electron spectra, the three are barely distin-
guishable on the scales shown.

between these different levels arise of course on the low-
energy gap scale, as pursued in the following sections.

The comments above refer to intermediate to strong
coupling behaviour, with a natural emphasis on the lat-
ter. But what of weak coupling? Here, as for the AIMs
considered hitherto [25,30,31], the LMA is readily shown
to be perturbatively exact to/including second order in
the interaction U . Figure 5 demonstrates the point, show-
ing LMA results for Df (ω) with V 2 = 0.2 and U = 1 and
0.25, compared to those from simple second order pertur-
bation theory in U (SOPT): with decreasing U the LMA
spectrum clearly reduces to that from SOPT, and for the
lower U shown the two are essentially indistinguishable on
all energy scales.

We turn now to the central issues: low-energy dynam-
ics on the scale of the Kondo insulating gap, particularly
in the strong coupling regime; and, most importantly, uni-
versal spectral scaling in terms of the gap itself.

5.1 1-Loop LMA

We begin by discussing the LMA at 1-loop level, viz. a
single iterative loop (steps (i)-(iii)) of the general scheme
discussed in Section 3.3. Results from the full iterative so-
lutions will be considered in Section 5.2; but the simpler
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Fig. 5. Weak coupling LMA f -electron spectra (solid lines), for
U = 1 and 0.25 (with V 2 = 0.2). Corresponding results from
second order perturbation theory in U (SOPT, dashed lines)
are also shown; for the lower-U they are indistinguishable from
the LMA.

1-loop level is itself important because it offers an analyt-
ical handle on, and insight into, the problem.

The inset to Figure 6 shows the low-energy behaviour
of the 1-loop f -electron spectrum vs. ω(≡ ω/t∗), i.e. on an
‘absolute’ scale; for V 2 = 0.2 and two different interaction
strengths, U = 6.1 (x = 1

2U |µ| = 3) and U = 8.1 (x = 4).
The spectra are quite distinct and clearly dependent on
the bare material parameters, with the gap narrowing
strongly under the modest increase in U . The main part of
Figure 6 by contrast shows 2πV 2Df (ω) vs. ω′ = ω/[ZV 2]
where Z ≡ [1 − (∂ΣR

σ (ω)/∂ω)ω=0]−1 (Sect. 3.2) is the
quasiparticle weight. The point is obvious: the spectra col-
lapse to a common form; which universal scaling is indeed
seen to be in terms of the gap scale ∆g = ZV 2, as required
from the quasiparticle form discussed in Section 2 that
embodies perturbative continuity to the non-interacting
limit (and full comparison to which is given in Sect. 5.2,
see Fig. 9 below). The scaling spectrum V 2Df (ω) is en-
tirely independent of the two bare parameters U and V ,
which enter solely via the dependence of the gap scale
thereon; and we emphasize that this applies to V 2Df (ω)
and not therefore to Df (ω)[≡ t∗Df (ω)] (i.e. if the calcula-
tions of Figure 6 are repeated for different V 2, Df (ω) vs.
ω′ is not itself universal but V 2Df is). Before proceeding
we add that, as for the pure impurity models considered
hitherto [25–33], the small spectral ‘dip’ at |ω′| � 2.5 is
entirely an artifact of the specific RPA-like form for the
Πσ−σ(ω) employed here; it can be eliminated [26] but we
are content to live with it in the following.

The first obvious question is how the quasiparticle
weight, and hence ∆g = ZV 2, depends upon the bare pa-
rameters in the strong coupling regime of interest. This
can be determined analytically as now outlined, focus-
ing on equation (3.16) for ΣR

↑ (ω). At the 1-loop level the
medium propagator G̃↓ in equation (3.16) reduces to the
MF propagator gf

↓ as explained in Section 3.3, step (i).
But in strong coupling the spectral weight of ImΠ+−(ω)
is confined to ω > 0, with

∫ ∞
0 (dω/π)ImΠ+−(ω) = 1;

behaviour that reflects physically the strong coupling sat-
uration of the local moment (|µ| → 1). As discussed in
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Section 3.3 the resonance in ImΠ+−(ω) is (by definition
of ωm) centred on the low-energy spin-flip scale ωm; and
on scales of this order gf−

↓ (ω) is slowly varying, whence
equation (3.16) for ΣR

↑ (ω) reduces asymptotically to

ΣR
↑ (ω) ∼ U2Regf−

↓ (ω + ωm). (5.1)

But Regf−
σ (ω) is given by the one-sided Hilbert transform

(Eq. (3.17)); which as ω → 0 is dominated by the log sin-
gularity arising because (Sect. 4) the MF spectrum df

σ(ω)
in strong coupling is itself non-vanishing at the Fermi level
ω = 0. This ω → 0 behaviour is captured by

Regf−
↓ (ω) ∼ df

↓(0)
∫ 0

−t∗
dω1 P

(
1

ω − ω1

)

= df
↓(0) ln

(
t∗
|ω|

)
(5.2)

where a high energy cutoff of order t∗ is employed (its
precise value being immaterial, the important point be-
ing that the prefactor to the log divergence is precisely
df
↓(0)). But in strong coupling df

σ(ω = 0) is given from
equation (4.2); using which equations (5.1, 5.2) yield the
desired low-frequency behaviour

ΣR
↑ (ω) ∼ −4V 2ρ0(0) ln

( |ω + ωm|
t∗

)
(5.3)

(with ρ0(0) = 2/(πt∗) for the BL, although we add that
Eq. (5.3) holds for an arbitrary underlying lattice). From
this the quasiparticle weight
Z = [1−(∂ΣR

↑ (ω)/∂ω)ω=0]−1 follows directly, being given
for ωm/V 2ρ0(0) → 0 by

π

8
ωm =

π

2
V 2ρ0(0)Z (5.4a)

=
V 2

t∗
Z ≡ ∆g (5.4b)

with the latter explicitly for the BL.
The gap and spin-flip scales are thus equivalent. And

their mutual dependence on bare material parameters fol-
lows from symmetry restoration (Sect. 3.3, step (ii)), viz.
from equation (3.12) in strong coupling (where |µ̄| → 1)
via ΣR

↑ (ω = 0) = 1
2U ; which, combined with equa-

tion (5.3) gives the desired result

ωm ∼ ∆g ∼ t∗exp
( −U

8V 2ρ0(0)

)
(5.5a)

= t∗exp
(−πUt∗

16V 2

)
(5.5b)

showing that ∆g = ZV 2/t∗ is indeed exponentially small
in strong coupling.

Once symmetry has been restored as above, the self-
energies Σ̃σ(ω) (Eq. (3.9)) for all ω follow immedi-
ately. The final step in the 1-loop analysis (step (iii),

Sect. 3.3) is to take the resultant Σ̃σ(ω) and use them
in equations (3.8a, 3.8b) to solve self-consistently for
Gc(ω). This in turn determines directly the effective f -
electron hybridization ∆eff(ω) = V 2[ω+ − S(ω)]−1 ≡
V 2[ω+ − 1

4 t2∗G
c(ω)]−1 (BL); in terms of which Gf (ω) and

hence Df (ω) follow without further ado from equations
(3.8a, 3.8c), viz.

Gf (ω) =
1
2

∑
σ

[ω+ − Σ̃σ(ω) − ∆eff(ω)]−1 . (5.6)

The 1-loop results shown in Figure 6 have of course been
obtained in this way.

There is however a simpler, certainly crude but
nonetheless revealing approximation that may be em-
ployed at this final (step (iii)) stage to determine Gf (ω):
namely to replace the Gc-dependence of ∆(ω) ≡ ∆[Gc]
by ∆(ω) � ∆[gc] in terms of the MF propagator (as
used also in the ‘startup’ step (i) (Sect. 3.3), there lead-
ing to G̃−σ � gf

−σ in Σσ(ω)). With this, the resultant
∆(ω) = ∆R(ω) − isgn(ω)∆I(ω) reduces in strong cou-
pling, using equation (4.1), to ∆(ω) ≈ V 2g0(ω) with
g0(ω)(= Reg0(ω) − isgn(ω)πρ0(ω)) the V = 0 conduc-
tion electron propagator (a result readily shown to hold
for a general lattice). In the strong coupling regime where
∆g ∝ Z → 0, the ω-dependence of g0(ω) is moreover ir-
relevant, occurring as it does on non-universal scales on
the order of t∗; whence ∆(ω) ≈ −isgn(ω)πV 2ρ0(0) and
equation (5.6) becomes

Gf (ω) ≈ 1
2

∑
σ

[
ω+ − Σ̃σ(ω) + isgn(ω)∆0

]−1

(5.7)

where ∆0 = πV 2ρ0(0).
Equation (5.7) is simply the local impurity Green func-

tion for a metallic Anderson impurity model with hy-
bridization strength ∆0 = πV 2ρ0(0) ≡ 2V 2/t∗ (BL). The
resultant impurity scaling spectrum π∆0Dimp(ω) is also
compared to the 1-loop π∆0D

f (ω) in Figure 6. The AIM
spectrum is of course metallic (with π∆0Dimp(ω = 0) = 1
as required by the Friedel sum rule [2]), in contrast to
the gapped PAM case; but beyond the gap the spectral
tails of the two rapidly coincide. This is natural, for the
nature of the 1-loop calculation is clear: the 1-loop self-
energies Σ̃σ(ω) are themselves those of the underlying
AIM. And since the associated low-energy scale is deter-
mined from symmetry restoration via Σ̃R

σ (ω = 0) = 0,
the low-energy gap scale is simply the Kondo scale for
the AIM itself; as seen directly from equation (5.5) ex-
pressed as ∆g/t∗ ∼ exp(−πU/8∆0), recovering the exact
exponent for the symmetric AIM [2]. The gap in the PAM
spectrum (which is strictly soft at 1-loop level, albeit not
visibly so in Fig. 6) arises from self-consistent solution
of equations (3.8a-c) for Gc(ω) and hence Gf (ω), given
the effective AIM Σ̃σ(ω). In that sense the 1-loop level is
akin to an average t-matrix approximation [20], but for-
mulated within the two-self-energy description inherent to
the LMA and with symmetry restoration ensuring Fermi
liquid behaviour (in the general sense of adiabatic conti-
nuity to the non-interacting limit).
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Fig. 6. 1-Loop LMA results for scaling behaviour of f -electron spectrum. Inset: 2π V 2

t∗ Df (ω) on an ‘absolute’ scale vs. ω/t∗,
for U/t∗ = 6.1 (solid line) and 8.1 (dotted line). Main figure: collapse to scaling form (solid line), same results shown vs.
ωt∗/(ZV 2) ≡ ω/∆g. The scaling spectrum for the Anderson impurity model (see text) is also shown in the main figure (dashed
line).

Despite the relative simplicity of the 1-loop LMA, the
relation of the AIM implicit therein is both natural and
substantially correct: NRG calculations for example [8]
(see Fig. 1 therein) indeed show, beyond the gap scale,
a close similarity between the PAM Df (ω) and the AIM
spectra. Moreover since the spectral ‘tails’ of the 1-loop
PAM and AIM are common (Fig. 6), recent LMA results
for the latter [26] may be used directly to infer their ana-
lytical form for V 2Df (ω) at 1-loop level; specifically

(πV )2ρ0(0)Df (ω) ∼ 1
2

{
1

[(4/π)ln(|ω̃|)]2 + 1

+
5

[(4/π)ln(|ω̃|)]2 + 25

}
(5.8)

where ω̃ = ω/ωm (and which form is known [26] to agree
quantitatively for |ω̃| � 5 with NRG results [32] for the
AIM itself). These slow logarithmic tails persist in the
V 2Df (ω) scaling spectrum beyond 1-loop level (Sect. 5.2)
and, as for the AIM [26,29], are ultimately responsible for
the ‘high’ temperature logarithmic behaviour of transport
properties such as the resistivity.

In physical terms the limitations of 1-loop level are
nonetheless self evident; it misses the dynamical intersite
correlations embodied (as discussed in Sect. 3.2) in the
functional dependence of the self-energies Σσ(ω) upon the
renormalized f -electron medium propagators {G̃σ} (which
at 1-loop level are simply replaced by their MF counter-
parts).

5.2 Fully self-consistent LMA

The full LMA solutions are now considered. In the fol-
lowing, we denote by ‘LMA I’ results obtained from the

3 4 5 6 7 8
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Fig. 7. Dependence on bare parameters of the low-energy scale
ωm ∝ ∆g = ZV 2/t∗, arising from the LMA at 1-loop (circles),
LMA I (squares) and LMA II (triangles).

class of diagrams contributing to Σσ(ω) shown explicitly
in Figure 1; while ‘LMA II’ refers to those obtained from
the further renormalization of Πσ−σ in terms of the f -
electron medium propagators (i.e. all propagators in Fig-
ure 3 renormalized in terms of the double line G̃σ’s).

Figure 7 shows the dependence on bare parameters of
the low energy scale ωm ∝ ∆g = ZV 2/t∗ arising from
LMA I/II for the Bethe lattice, in comparison to that ob-
tained at 1-loop level (Eq. (5.5), which form is confirmed
in Figure 7, with the prefactor ∼ 0.2t∗ determined nu-
merically). Two points should be noted here. First that
the lattice scale is enhanced over its 1-loop counterpart
(which as above is equivalently that of the underlying
AIM); qualitative behaviour that is also found in NRG [8]
and QMC [10] calculations for the symmetric PAM. The
second point is the exponential dependence of the scale,
ωm ∝ exp[−λU/8V 2ρ0(0)] with λ = 1 at 1-loop level.
From Figure 7 we find that λ = 1 remains at the level of
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Fig. 8. f -electron scaling spectra 2π V 2

t∗ Df (ω) vs. ω/∆g arising from LMA I (dashed line) and LMA II (solid line). Right inset:

on an expanded scale to show the logarithmic tails. Left inset: corresponding c-electron spectra from LMA I/II.

LMA I, while λ � 0.85 is found from the fully renormal-
ized LMA II. The latter is in qualitative agreement with,
but somewhat larger than, NRG calculations [8] which
yield λ � 0.7; which in turn are comparably in excess
of λ = 1

2 arising from the Gutzwiller approximation [23].
The dependence of the low-energy scale on bare model
parameters is however a subsidiary issue compared to the
scaling behaviour of dynamics in terms of the gap scale
itself. The latter is illustrated in Figure 8 which shows the
f -electron scaling spectra 2π V 2

t∗
Df (ω) vs. ω′ = ω/∆g, for

both LMA I and II; the corresponding c-electron spectra
t∗Dc(ω) are shown in the left inset. Despite the differences
in the absolute values of the low-energy scale (embodied
in Fig. 7), the resultant LMA I/II scaling spectra differ
very little from each other; and exhibit the same qualita-
tive behaviour as found at 1-loop level (Fig. 6), including
the logarithmic spectral tails in V 2Df (ω) evident in the
right inset to Figure 8.

As discussed in Section 2, adiabatic continuity to the
non-interacting limit requires that on sufficiently low en-
ergy scales the resultant spectra should conform to the
dictates of Fermi liquid theory, as reflected in the quasi-
particle form equations (2.10, 2.11). In Figure 9 the f -
and c-electron scaling spectra arising from LMA II are
compared directly to the limiting quasiparticle behaviour
equation (2.11) (corresponding comparisons for LMA I
and the 1-loop results are very similar, as evident from
Figs. 6, 8). Agreement with the quasiparticle form is es-
sentially perfect close to the gap edges; and in practice
is followed quite closely up to |ω′| = |ω|/∆g ∼ 3 or so.
Beyond this however, the quasiparticle form fails to cap-
ture the logarithmic tails of the scaling spectrum, decay-
ing instead as V 2Df (ω) ∼ 1/|ω′|2 (Eq. (2.11b)). This is
of course natural since the quasiparticle behaviour is con-
fined strictly to the limiting low-ω′ behaviour, and it mir-
rors the situation arising in the metallic AIM where the
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Fig. 9. Comparison of LMA II scaling spectra (solid lines) to
the limiting low-energy quasiparticle form (dashed lines). Top
panel, c-electron scaling spectra; bottom, f -electron spectra.

quasiparticle form is a trivial Lorentzian [2] that likewise
fails to capture the slow spectral tails of the Kondo reso-
nance [26].

Finally, an obvious question arises: how strongly do
the scaling spectra depend upon the host lattice? For the
metallic AIM the answer is not at all: in the strong cou-
pling Kondo regime the ω-dependence of the host density
of states to which the impurity is coupled is entirely irrel-
evant (see e.g. [2]), and the scaling form of π∆0Dimp(ω)
is host-independent. But this is not of course the case for



62 The European Physical Journal B

-20 -10 0 10 20
0

0.4

0.8

1.2
D

c (ω
) 

/ ρ
0(0

)

-20 -10 0 10 20

ωt*/(ZV
2
)

0

0.5

1

1.5

(π
V

)2 ρ 0(0
) 

D
f (ω

)

Fig. 10. LMA I scaling spectra for the hypercubic lattice (solid
lines), compared to those for the Bethe lattice (dashed).

the PAM. The preceding results have been given explicitly
for the BL where the free (V = 0) conduction band ρ0(ω)
is semielliptic. To illustrate the influence of the lattice,
Figure 10 compares the LMA I scaling spectra for the BL
with those for the hypercubic lattice (HCL, where ρ0(ω)
is an unbounded Gaussian). While the Kondo insulating
gap for the BL is hard, it is strictly soft for the HCL,
albeit that this is barely visible in Figure 10 since the re-
sultant Dγ(ω) are exponentially small close to the Fermi
level. But beyond the immediate vicinity of the gap, and
despite the very different nature of the host ρ0(ω)’s, the
scaling spectra are seen to be qualitatively very similar;
supporting the view that for local dynamical properties
the one-electron ‘details’ of the lattice play but a minor
role.

6 Discussion/outlook

We have developed in this paper a local moment approach
to T = 0 single-particle dynamics of the symmetric PAM,
the basic microscopic model for understanding Kondo in-
sulating materials [34,35]. The necessary criteria for a suc-
cessful description of the problem appear to be met by the
LMA, handling as it does all energy scales and interaction
strengths while satisfying the requirements of Fermi liquid
theory at sufficiently low energies.

Particular attention has been given for obvious phys-
ical reasons to the strong coupling (i.e. large U) Kondo
lattice regime, believed to be appropriate to the Kondo
insulator materials mentioned in Section 1. We have
shown that within DMFT+LMA one nevertheless re-

covers correctly, on sufficiently low energy scales, an
‘insulating Fermi liquid’ behaviour which evolves contin-
uously from the non-interacting hybridization gap insula-
tor. For example, the scaled conduction electron and f -
electron spectra have a renormalized non-interacting form
(Eqs. (2.10, 2.11)) for |ω|/∆g � 2 − 3 (see Fig. 9);
where ∆g, the renormalized gap, is reduced from the
non-interacting hybridization gap ∆0

g by the quasiparticle
weight factor Z. For larger energies the (scaled) spectra
deviate rapidly and substantially from the non-interacting
form, but nonetheless remain charcterized by a single low-
energy scale ∆g ∝ Z that is exponentially small but in
general enhanced over its counterpart in the dilute (AIM)
limit [42]. The spectra thus exhibit ‘universal scaling’ in
terms of ω/∆g (Fig. 9), which we find to be dominated
by slow logarithmic tails just as for the metallic AIM,
and for which the LMA provides analytic results (see e.g.
Eq. (5.8)). We naturally expect that these features will
also show up in the dynamic and transport properties of
the model at finite-T , a subject to which we will turn in
a subsequent paper.

Finally, the present work has been confined intention-
ally to the symmetric PAM relevant to the Kondo insula-
tors. This is of course a special, albeit physically impor-
tant limiting case of the asymmetric PAM with arbitrary
conduction band filling nc, which for nc �= 1 describes the
metallic heavy fermion compounds; and extension of the
LMA to encompass which is currently in hand.
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